Newton's Three Laws of Motion

Second Law -

A _____ upon an object causes it to _____ according to the formula:

_____(N) = _____(Kg) x _____(m/s/s)

First Law _____ is the force required to change the state of motion. Unless acted upon by an _____ force, an object at ____ remains at rest, or if in motion, it continues to move in a _____ line with speed.

Third Law -

For every action (______), there is an and reaction.

2.1. BIOMECHANICAL PRINCIPLES

Scalers

Distance

A scalar _____

describes a measurement
in size or _____
without taking into
account ____.

Example - units for the
equation
distance =
speed x time

Centre of Mass (COM)

Where an objects mass is considered to be concentrated, also known as the "_____ "

· _____

Metres	Seconds	
Kilometres	Hours	
Miles	Minutes	

Time

Speed

Factors affecting stability

